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The Distribution of Human Genetic Diversity: A Comparison
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We report a comparison of worldwide genetic variation among 255 individuals by using autosomal, mitochondrial,
and Y-chromosome polymorphisms. Variation is assessed by use of 30 autosomal restriction-site polymorphisms
(RSPs), 60 autosomal short-tandem-repeat polymorphisms (STRPs), 13 Alu-insertion polymorphisms and one LINE-
1 element, 611 bp of mitochondrial control-region sequence, and 10 Y-chromosome polymorphisms. Analysis of
these data reveals substantial congruity among this diverse array of genetic systems. With the exception of the
autosomal RSPs, in which an ascertainment bias exists, all systems show greater gene diversity in Africans than in
either Europeans or Asians. Africans also have the largest total number of alleles, as well as the largest number of
unique alleles, for most systems. GST values are 11%–18% for the autosomal systems and are two to three times
higher for the mtDNA sequence and Y-chromosome RSPs. This difference is expected because of the lower effective
population size of mtDNA and Y chromosomes. A lower value is seen for Y-chromosome STRs, reflecting a relative
lack of continental population structure, as a result of rapid mutation and genetic drift. Africa has higher GST

values than does either Europe or Asia for all systems except the Y-chromosome STRs and Alus. All systems except
the Y-chromosome STRs show less variation between populations within continents than between continents. These
results are reassuring in their consistency and offer broad support for an African origin of modern human
populations.

Introduction

The distribution of human genetic diversity has long
been a subject of interest, and it has important impli-
cations for human evolution, forensics, and the distri-
bution of genetic diseases in populations. Genetic di-
versity in human populations is low relative to that in
many other species, attesting to the recent origin and
small size of the ancestral human population (Li and
Sadler 1991; Crouau-Roy et al. 1996; Kaessmann et al.
1999b). The proportion of diversity that exists between
human populations is also relatively low. An early study,
based on protein polymorphisms, arrived at a between-
groups diversity estimate of 15% (Lewontin 1972).
Other studies, based on protein polymorphisms as well
as on blood groups and craniometrics, have yielded sim-
ilar results (Nei and Livshits 1990; Relethford and Har-
pending 1994). Recently, surveys of mitochondrial (Mer-
riwether et al. 1991), Y-chromosome (Hammer et al.
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1997), and various types of autosomal polymorphisms
(Bowcock et al. 1991; Batzer et al. 1994; Deka et al.
1995a, 1999; Jorde et al. 1995; Watkins et al. 1995;
Barbujani et al. 1997; Stoneking et al. 1997) have all
shown that most human genetic diversity is found
within, rather than between, populations.

Although most assessments of genetic diversity have
been based on a single type of genetic system, some of
the most informative diversity studies have involved the
comparison of estimates based on different types of sys-
tems. Such comparisons have led to important conclu-
sions about human origins and about sex-specific dif-
ferences in population size and gene flow (Jorde et al.
1995, 1998; Sajantila et al. 1996; Spurdle and Jenkins
1996; Merriwether et al. 1997; Poloni et al. 1997; Scoz-
zari et al. 1997; Bamshad et al. 1998; Lum et al. 1998;
Passarino et al. 1998; Seielstad et al. 1998; Kittles et al.
1999; Perez-Lezaun et al. 1999). A drawback of many
of these studies, however, is that they are based on lim-
ited types of genetic systems, and they often do not
compare the same polymorphisms in the same popu-
lations. Here, we present the first published comparison
of within- and between-population genetic diversity in
autosomal, mtDNA, and Y-chromosome loci in the
same set of individuals. Variation is assessed in auto-
somal short-tandem-repeat polymorphisms (STRPs),
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autosomal restriction-site polymorphisms (RSPs), au-
tosomal Alu polymorphisms, mtDNA control-region
sequences (hypervariable sequences 1 and 2), and Y-
chromosome polymorphisms. Substantial congruity is
seen among various types of systems for most compar-
isons, but illuminating differences are also seen.

Methods

The study population, which includes 72 Africans, 63
Asians, and 120 Europeans, has been described else-
where (Jorde et al. 1995, 1997). These three continental
groups were further subdivided into six African popu-
lations (Biaka Pygmy, Mbuti Pygmy, Nguni, San, Sotho/
Tswana, and Tsonga), five Asian populations (Cambo-
dian, Chinese, Japanese, Malay, and Vietnamese), and
four European populations (Finnish, French, Polish, and
northern European). Informed consent was obtained
from all subjects whose blood was drawn at the Uni-
versity of Utah.

The 60 autosomal STRP and 30 RSPs, as well as 200
bp of mitochondrial hypervariable sequence 2 (HVS2)
data, were obtained by methods described elsewhere
(Jorde et al. 1995, 1997). HVS1 sequences (411 bp)
were PCR amplified in a 1.1- or 0.45-kb fragment in
1# PCR buffer (10 mM Tris pH 8.3, 50 mM KCl, 1.5
mM MgCl2) by use of 20 ng of template, 200 mM
dNTPs, 50 pmol of each primer (UPL15996, RPH408,
and H16401 [Bamshad et al. 1998]), and 1 U of Taq
DNA polymerase, in a total reaction volume of 50 ml.
Samples were cycled by use of a standard three-step PCR
profile, with the annealing temperature for the first five
cycles set to 58�C and then lowered to 54�C for an
additional 25 cycles. Sequence for HVS1 was generated
from the UPL15996 and H16401 primer sites by use
of ABI Dye-primer or dRhodamine sequencing reagents
and an ABI 377 automated DNA sequencer. Sequence
data were compared and edited by use of the SE-
QUENCHER software package (Genecodes).

Multiplex genotyping of six Y-chromosome STRPs
(Y STRPs)—DYS19, DYS288, DYS388, DYS389,
DYS390, and DYS393—was done by use of an ABI 377
automated DNA sequencer. The PCR reaction con-
tained one fluorescent end-labeled primer for each locus.
DNA samples were amplified by PCR in 1 # buffer (10
mM Tris pH 8.3, 50 mM KCl) by use of 25 ng of
genomic template DNA reaction product, 50 mM each
dNTP, and 0.2 U of Taq DNA polymerase complexed
with TaqStart antibody (Clontech). Primer concentra-
tions were optimized for each multiplex PCR panel.
Thermal cycling was done in a Perkin-Elmer 9600 PCR
machine by use of a modified touchdown protocol in
which the first five cycles are done with annealing tem-
peratures 2�C above the predicted average melting tem-
perature (Tm), followed by 25 additional cycles with

annealing temperatures 4�–6�C lower. The Y-chromo-
some genotyping used four-color fluorescent-dye chem-
istry; six STRPs were multiplexed in two PCR reactions
and were run in a single ABI lane. Products were re-
solved with urea denaturing polyacrylamide gels on the
ABI sequencer by use of internal size standard in each
lane. Raw genotype data were collected by use of
GENESCAN software (ABI), and gel files were analyzed
by use of GENOTYPER software package (ABI). Y-
chromosome polymorphisms for the southern-African
populations were obtained from the Y Chromosome
Microsatellites Web site and are more fully described
by Seielstad et al. (1999). In addition to the Y STRPs,
the Y-specific Alu insertion (YAP, DYS287) and three
Y-specific RSPs (DYS257, DYZ3, and SRY10831) were
assayed manually by use of PCR amplification, electro-
phoresis on 2.5% agarose gels, and ethidium bromide
staining for visualization.

Thirteen Alu insertion polymorphisms (HS2.43,
HS4.14, HS4.65, HS4.75, Sb19.3, Sb19.12, APO, B65,
COL3A1, D1, PV92, TPA25, and HS4.32) (Arcot et al.
1996, 1997, 1998; Milewicz et al. 1996; Stoneking et
al. 1997) and one LINE-1 element (DV1.9) were gen-
otyped manually. Regions containing polymorphic Alu
inserts were amplified by PCR; 25 ng of genomic DNA
was amplified with locus-specific flanking primers in 1#
PCR buffer (10 mM Tris pH 8.3, 50 mM KCl, 1.5 mM
MgCl2) by use of 200 mM each dNTP, 10 pmol each of
both flanking primers, and 1 U of Taq DNA polymerase,
in a total reaction volume of 25 ml. Samples were cycled
in a standard three-step PCR profile with the annealing
temperatures standardized for the 58�C/54�C PCR pro-
tocol described above for most primer sets. To reduce
nonspecific amplification products for systems HS2.43,
HS4.65, Sb19.12, B65, and PV92, dimethyl sulfoxide
was added to a final concentration of 10%. In addition,
the cycling temperatures were increased 4�C for
COL3A1. PCR products were resolved on 3% Nusieve
agarose gels in 0.5 # Tris-borate EDTA and were vi-
sualized by ethidium bromide staining.

For mtDNA sequence data, gene diversity was esti-
mated for each population as , wheren/(n–1)Sx x di j ij

n is the number of DNA sequences examined, xi and
xj are the population frequencies of the ith and jth
type of DNA sequences, respectively, and dij is the pro-
portion of nucleotides that differ between the ith and
jth types of DNA sequence. For the Y-chromosome and
autosomal systems, gene diversity was estimated as

), where xi is the estimated frequency of2n/(n–1)(1–Sxi

the ith allele in the system. For diploid loci, this ap-
proach provides an estimate of the heterozygosity level
expected under random mating.

To take into account the information provided by
multiple alleles, allele size variance was estimated for
the Y-chromosome and autosomal STRPs. This ap-
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Table 1

Gene-Diversity Estimates for Continental Populations

GENE-DIVERSITY ESTIMATE (AVERAGE VARIANCE RATIO)

CONTINENT STRP RSP Alu HVS1 HVS2 Y STRP

Africa .679 (1.13) .293 .276 .022 .030 .576 (1.05)
Asia .638 (.92) .350 .233 .015 .011 .472 (1.00)
Europe .675 (.94) .401 .243 .009 .010 .498 (.95)

Table 2

Gene-Diversity Estimates for Individual Populations

POPULATION

GENE-DIVERSITY ESTIMATE

STRP RSP Alu HVS1 HVS2 Y STRP

Biaka .714 .319 .281 .019 .030 )a

Mbuti .739 .195 .298 .021 .027 .564
Nguni .692 .311 .315 .022 .030 .501
San .648 .240 .322 .018 .014 .594
Sotho/Tswana .697 .310 .308 .025 .035 .581
Tsonga .690 .307 .316 .017 .030 )a

Cambodian .669 .395 .252 .013 .010 .413
Chinese .660 .365 .232 .015 .013 .552
Japanese .629 .313 .147 .014 .007 .434
Malay .625 .398 .299 .017 .010 .560
Vietnamese .664 .337 .222 .016 .010 .567
Finnish .660 .391 .227 .010 .014 .312
French .649 .406 .275 .006 .009 .494
Northern European .684 .400 .244 .009 .010 .343
Polish .685 .415 .234 .006 .010 .700

a Because an insufficient number of male subjects were available,
variation could not be estimated reliably.

proach assumes a stepwise mutation model for STRPs,
which appears to be consistent with the distribution of
allele sizes (Di Rienzo et al. 1994; Shriver et al. 1995).
Population comparisons of average variances across loci
can be misleading, however, because the average vari-
ance tends to be dominated by a small number of highly
variable, rapidly mutating STRPs. To control for this
effect, the average variance of each locus across the three
continental populations was estimated, and then a var-
iance ratio was constructed by dividing each individual
continental variance by the average variance across con-
tinental populations. This variance ratio was then av-
eraged across all loci for each of the three continental
populations (Jorde et al. 1997).

Gene-diversity levels within and between populations
were used to estimate the proportion of genetic variance
due to subdivision, termed “FST” or “GST” (Wright
1965). The grouping of populations into major conti-
nents (Africa, Asia, and Europe) allowed the analysis
of variation (analysis of molecular variance, or
AMOVA) at three levels: within individual populations,
between populations within continents, and between
continents. All calculations, including random-permu-
tation procedures to assess statistical significance, were
performed by use of the ARLEQUIN package (Excoffier
et al. 1992; Schneider et al. 1997).

Results

Gene-diversity levels for each continental population are
given in table 1. The most notable pattern is that Af-
ricans have the highest level of diversity for all types of
systems except the nuclear RSPs, for which Europeans
have the highest level of diversity. The latter finding is
explained by a pronounced ascertainment bias because
RSPs were originally identified as a result of heterozy-
gosity in European subjects (Mountain and Cavalli-
Sforza 1994). STRPs, because of higher levels of poly-
morphism, are less subject to this bias (Rogers and Jorde
1996) and thus reveal higher levels of African diversity.
This trend is more evident when allele-size-variance ra-
tios are examined. In this case, the autosomal STRPs
exhibit variance that is ∼20% higher in African popu-
lations than in non-African populations. A slightly
smaller difference (10%) is seen when variance ratios

are estimated for the Y STRPs. Another trend seen in
table 1 is that African mtDNA diversity is two to three
times higher than that of non-African populations,
whereas, for the nuclear Alu and STR polymorphisms,
African diversity is only 5%–30% higher than non-Af-
rican diversity.

Table 2 provides a breakdown of gene-diversity es-
timates for each of the 15 individual populations. Again,
the individual African populations tend to have the
highest levels of diversity for most systems. For the Y
STRPs, two European populations (northern Europeans
and Finns) have strikingly low levels of diversity, es-
pecially in comparison with those in the other European
populations. This contrasts with their diversity esti-
mates for other systems, in which they tend to be quite
similar to those in other European populations.

Table 3 summarizes gene diversity in terms of both
the number of alleles per continental population and
the number of alleles unique to each population (i.e.,
present in one population but not in the other two).
This tabulation was not done for the autosomal RSP
and Alu systems because nearly all loci were polymor-
phic in all three continental populations. A total of 635
different autosomal STRP alleles are seen in the 60 mi-



982 Am. J. Hum. Genet. 66:979–988, 2000

Table 3

Total Number of Alleles and Number of Unique Alleles,
per Continental Population

POPULATION

TOTAL NO. OF ALLELES

(NO. OF UNIQUE ALLELES)

STRP HVS1 HVS2 Y STRP

Africa 544 (62) 62 (28) 25 (10) 36 (8)
Asia 474 (16) 73 (28) 17 (4) 28 (2)
Europe 526 (34) 67 (27) 24 (7) 32 (6)

Overall 635 128 44 47

Table 4

GST Values, by Continent and for All Populations

CONTINENT

GST VALUE FOR

STRP RSP Alu HVS1 HVS2 Y STRP

Africa .024 .027 .017 .088 .092 .026
Asia .007 .017 .022 .032 .017 .092
Europe .023 .013 .009 .045 .013 .602

Overall:
Three continents .109 .142 .179 .237 .267 .044
Fifteen populations .097 .113 .151 .233 .261 .178

NOTE.—All GST values differ significantly ( ) from 0.P ! .0001

crosatellite loci, and a total of 47 Y-STRP alleles are
seen in 6 loci. Africans have the largest number of al-
leles, as well as the largest number of unique alleles, for
autosomal and Y STRPs. The same holds true for the
HVS2 sequence data, in which an allele is defined as
a variant nucleotide at a given position along the
sequence.

Although HVS1 gene diversity is nearly twice as high
in Africans as in non-Africans (table 1), Africans have
a slightly lower number of HVS1 alleles, and the num-
ber of unique HVS1 alleles is nearly identical in the
three populations. This apparent discrepancy is ex-
plained by the pattern seen in figure 1, in which the
frequencies of the minor alleles (i.e., deviations from the
most common nucleotide) are plotted for each popu-
lation. Figure 1 shows that approximately half of the
minor alleles in Asians and Europeans occur only once
in the population. In contrast, fewer than one third of
the African minor alleles occur only once, in spite of
the fact that the African sample size is substantially
smaller than the European sample size. Europeans and
Asians also have an excess of minor alleles that are seen
in only two or three copies. Africans have more minor
alleles seen in greater copy number, especially in the
“110” category. Each of these relatively common minor
alleles is found in most or all of the six African popu-
lations; they are thus likely to represent relatively old
mutations. The presence of many minor alleles of low
frequency in non-Africans is consistent with the ap-
pearance of new mutations in these populations after
their exit from Africa and subsequent population ex-
pansion. Although a similar pattern of minor-allele fre-
quencies is seen for the HVS2 sequence (fig. 2), Africans
have a larger number of HVS2 alleles than do non-
Africans. This difference between the HVS1 and HVS2
allele counts can be explained by the fact that the mu-
tation rate for HVS1 sequence is, on average, twice as
high as that for HVS2 sequence (Meyer et al. 1999).
One would thus expect that, in non-African popula-
tions, the accumulation of new mtDNA mutations
would be more rapid for HVS1 than for HVS2.

GST values estimated for the worldwide sample by use
of the three continents as subdivisions are given in table

4. All three autosomal systems (STRPs, RSPs, and Alus)
yield overall GST estimates of 11%–18%, in accord with
the results of previous studies. The GST estimates for
the two mtDNA sequences are substantially higher, re-
flecting the fact that the effective size for mtDNA is only
one-fourth that for nuclear DNA. Consequently, differ-
entiation due to random drift tends to proceed more
rapidly for mtDNA. The GST for Y STRPs is surprisingly
low and may reflect some degree of convergence in allele
sizes for these rapidly mutating systems when major
continental populations are compared. When the 15
individual populations, rather than the three continental
populations, are used as units of subdivision, the Y-
chromosome estimate increases to 18%.

Table 4 also shows GST estimates for each continent
separately when the individual populations are used as
subdivisions. For the mtDNA sequences, African pop-
ulations are by far the most highly differentiated pop-
ulations, again reflecting high rates of drift for mtDNA.
Africans also have the highest GST values for the au-
tosomal RSP and STRP systems but not for the Alus
and the Y STRPs. For Y STRPs, Europeans have by far
the greatest level of differentiation. A genetic-distance
analysis (data not shown) indicates that this reflects ex-
treme divergence of the Finnish and northern-European
populations, which also have the lowest levels of Y-
chromosome diversity.

A hierarchical analysis of genetic variation (i.e.,
AMOVA) is presented in table 5. Consistent with the
GST results presented in table 4, the results of this anal-
ysis show that the great majority of genetic variation
occurs within populations. Notably, for all systems ex-
cept the Y STRPs, the differentiation of individual pop-
ulations within continents is several times lower than
the differentiation between continental populations. For
the Y STRPs, there is a very high level of differentia-
tion between populations within continents (especially
within Europe). Because the estimate for variation be-
tween continents is obtained by subtraction, it becomes
slightly negative for these systems. When the divergent
Finnish and northern-European populations are omitted
from this analysis, the percentage of variation between
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Table 5

Hierarchical AMOVA Analysis, Showing the Percentage of Variation at Each of Three Levels
of Population Hierarchy

COMPARISON

VARIATIONa

(%)

STRP RSP Alu HVS1 HVS2 Y STRP

Within populations 87.9 85.5 80.9 72.0 68.9 83.3
Between populations within continents 1.7 1.3 1.8 6.0 6.2 18.5b

Between continents 10.4 13.2 17.4 22.0 24.9 �1.8b

a All values, except for the negative value for Y STRPs, are significantly ( ) 10.P ! .0001
b When the highly divergent Finnish and northern-European populations are omitted, the

percentage of variation becomes 5.1%. between populations within continents and 7.8% be-
tween continents.

populations within continents becomes much smaller
(5.1%), and the percentage of variation between con-
tinents becomes positive (7.8%). The overall GST esti-
mate for Y STRPs increases to 13%. Thus, a possible
male-founder effect in these two populations accounts
for much of the discrepancy between the Y STRPs and
other systems.

Discussion

The gene-diversity results presented here are consistent
with one another and with those of many previous stud-
ies in showing higher levels of diversity in African pop-
ulations than in non-African populations (Vigilant et al.
1991; Nei et al. 1993; Bowcock et al. 1994; Deka et al.
1995b; Jorde et al. 1997). A study of eight Alu poly-
morphisms (Stoneking et al. 1997) showed that western
Asia has a slightly higher level of gene diversity than
does Africa. The present study, incorporating 13 Alu
polymorphisms and a LINE-1 element, indicates higher
variation in Africa than elsewhere. A higher level of Af-
rican diversity supports the hypothesis that modern hu-
mans first arose in Africa and then colonized other parts
of the world (Stoneking 1993), but genetic diversity is
related not just to a population’s “age” but also to dem-
ographic events in a population’s history, such as bot-
tlenecks and effective population size (Relethford 1995;
Rogers and Jorde 1995; Stoneking et al. 1997; Releth-
ford and Jorde 1999).

These results are also consistent with other those of
reports in showing that the ratio of African genetic di-
versity to non-African genetic diversity is much higher
for mtDNA than for nuclear DNA (Hey 1997; Cavalli-
Sforza 1998). This is sometimes attributed to natural
selection on the mtDNA genome in non-African pop-
ulations (Hey 1997), possibly as a result of adaptation
to new climates as modern humans radiated out of Af-
rica. The difference could also derive from the lower
effective size of the mtDNA genome, which makes it
more responsive to population bottleneck effects (Jorde

et al. 1997; Fay and Wu 1999). Still another explanation
is that a bottleneck effect is caused by mtDNA heter-
oplasmy (Cavalli-Sforza 1998). Arguing against the nat-
ural selection hypothesis is the fact that autosomal and
Y-chromosome analyses tend to confirm the broad pat-
tern of a rapid Pleistocene population expansion first
suggested by mtDNA data (Rogers 1995; Shriver et al.
1997; Harpending et al. 1998; Kimmel et al. 1998;
Reich and Goldstein 1998). It is unlikely that natural
selection would operate in a similar fashion on auto-
somal, Y-chromosome, and mtDNA.

Another possible explanation for the higher ratio of
African mtDNA diversity to non-African mtDNA di-
versity is that the autosomal systems, including STRPs,
are subject to some degree of ascertainment bias and
thus underestimate African diversity. Such a bias would
not apply to mtDNA sequence because the latter is as-
certained uniformly in all populations. This argument
is now defused by several recent studies of nuclear-DNA
sequence, all of which show excess African diversity,
but generally at a level of 10%–30% or so (Nickerson
et al. 1998; Zietkiewicz et al. 1998; Halushka et al.
1999; Kaessmann et al. 1999a; Rieder et al. 1999). An
exception is the PDHA1 locus, which shows much
higher African than non-African diversity (Harris and
Hey 1999). However, this is attributed to natural se-
lection acting on this locus in non-Africans (Harris and
Hey 1999). Considering these findings, it is probable
that excess African mtDNA diversity is the result of
lower mtDNA effective population size rather than nat-
ural selection.

Although the gene-diversity levels of each population
are mostly similar for different types of genetic systems,
there are some intriguing exceptions. In particular, the
Finnish and northern-European populations show
markedly reduced Y-chromosome variation relative to
that in the other European populations, but they do not
show such a reduction for other systems. This result
confirms other studies that have compared Y-chromo-
some, autosomal, and mtDNA variation in Finland and
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Figure 1 Distribution of minor-allele counts for HVS1 nucleo-
tides in Africans, Asians, and Europeans. The X-axis indicates the copy
number of each minor allele in each population (i.e., whether the allele
is seen once, twice, etc.), and the Y-axis indicates the number of alleles
that fall into each X-axis category.

Figure 2 Distribution of minor-allele counts for HVS2 nucleo-
tides in Africans, Asians, and Europeans. The X- and Y-axes are as
described for figure 1.

that have concluded that a founder effect has been much
more pronounced for Finnish males than for Finnish
females (Sajantila et al. 1996; Kittles et al. 1999). The
northern-European population, which consists of sub-
jects of British and Scandinavian ancestry, shows a
similar reduction of Y-chromosome diversity, possibly
indicating a male-specific founder effect in these
populations.

The worldwide GST values observed in this study are
remarkably consistent with those obtained elsewhere.
Other studies of autosomal RSPs have obtained GST

values of 10%–15% (Bowcock et al. 1991; Barbujani
et al. 1997 ). Similar values have been derived in anal-
yses of autosomal STRP variation (Bowcock et al. 1994;
Deka et al. 1995a; Barbujani et al. 1997; Calafell et al.
1998), although the GST values for microsatellite sys-
tems tend to be slightly lower than those based on RSPs.
This reflects the higher mutation rate of microsatellite
systems, which increases within-groups variation rela-
tive to between-groups variation and thus decreases GST

(Jin and Chakraborty 1995). The GST value of 18% for
the Alu systems is somewhat higher than the value of
13% that was obtained by an earlier study of eight Alu
polymorphisms (Stoneking et al. 1997). Using individ-
ual populations as the unit of subdivision, as was done
in the earlier study, we obtained a GST value of 15%.

The GST values observed for mtDNA are also similar
to other published values. Two large surveys based on
mitochondrial RSPs obtained GST values of 31% (Sto-
neking et al. 1990) and 35% (Merriwether et al. 1991).
These estimates, which are slightly higher than the con-

trol-region estimates reported here, could be elevated,
in part, because of the lower mutation rate outside the
control region. As discussed above, this would tend to
increase the relative level of between-group variation.
Similarly, the slightly higher GST values observed here
for HVS2 relative to HVS1 are consistent with a higher
mutation rate for the latter sequence (Meyer et al.
1999).

As discussed above, the low GST value observed for
the Y STRPs is caused mainly by a high degree of dif-
ferentiation between some populations within conti-
nents (particularly the Finnish and northern-European
populations). An examination of Y-STRP haplotypes
shows that nearly all haplotype sharing occurs within
populations and, occasionally, between populations
that are located close to one another. A relative lack of
large-scale geographic pattern in Y STRPs has been ob-
served in other studies (Deka et al. 1996; de Knijff et
al. 1997; Kayser et al. 1997). This can be attributed to
a combination of high mutation rate in these micro-
satellites (Heyer et al. 1997) and to the fact that the
effective population size of Y-chromosome polymor-
phisms, like that of mtDNA, is one-fourth that of au-
tosomal DNA. A combination of high mutation rate
and high drift rate is likely to erase long-term popula-
tion history quickly. Thus, relationships at the conti-
nental level may become blurred, as was seen in a pre-
vious analysis of Y STRPs (Deka et al. 1996).

In this context, it is interesting that a preliminary
analysis of three Y-chromosome RSPs and YAP in our
data set yields worldwide GST estimates of 36.3% and
53.9% when continents and individual populations, re-
spectively, are used as the unit of subdivision. These
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estimates are substantially higher than the microsatellite
estimates and are more similar to the estimate of 64%
obtained by Seielstad et al. (1998). Also consistent with
the RSP-STRP difference is a recent analysis of world-
wide Y-chromosome variation which obtained a GST

value of 40% for the YAP system and an average GST

of only 8% for two Y STRPs (Quintana-Murci et al.
1999). These patterns suggest that Y STRPs may be
useful for reconstruction of relatively recent population
history but may be somewhat undependable, on their
own, for reconstruction of ancient population history.

On the basis of a substantial elevation in worldwide
Y-chromosome single-nucleotide polymorphism (SNP)
variation (i.e., GST) relative to mtDNA GST, it has been
suggested that, throughout much of human evolution-
ary history, females have experienced greater popula-
tion movement than have males (Seielstad et al. 1998).
An earlier study that compared Y-chromosome and
mtDNA variation found a higher GST value for mtDNA
variation than for Y-chromosome variation (Poloni et
al. 1997), but the Y-chromosome RSP results reported
here offer some support for the hypothesis. A large-scale
comparison of Y-chromosome RSPs and SNPs with
mtDNA in the same human populations is needed to
help resolve this question.

Most systems show higher GST values for African pop-
ulations than for other populations, but this pattern is
not seen for either the Alu systems or the Y STRPs.
Although the Alu GST is only slightly greater in Asia
than in Africa, this result differs from that in a previous
survey of eight Alu polymorphisms, in which African
populations displayed the highest GST values (Stoneking
et al. 1997). The Y-STRP pattern is influenced by the
strong degree of local population differentiation. It is
important to exercise caution in comparing GST values
in these populations, because the number of populations
within each continental group is relatively small and
does not necessarily represent all of the variation within
the continent. GST estimates are sensitive to the number
and type of populations included in the sample (Jorde
1980), and they are also affected by the assumption that
populations have differentiated to an equal degree at
each level of hierarchy (Urbanek et al. 1996).

The hierarchical AMOVA analysis shows that, with
the exception of Y STRPs, all systems show much less
differentiation between populations within continents
than between continents. This result is expected when
there is greater gene flow between populations that are
in close geographic proximity to one another. The au-
tosomal values (table 5, row 2) are especially small,
ranging from 1.3% for the RSPs to 1.8% for the Alu
polymorphisms. This is in agreement with the small
continental GST values shown in table 4. Although the
sample sizes for individual populations in this analysis
are relatively small, all of the values shown in table 5

differ significantly ( , by the permutation test)P ! .0001
from 0. In addition, they are highly consistent both with
one another and with previous analyses of worldwide
variation in autosomal microsatellites and RFLPs,
which also show considerably greater differentiation be-
tween continents than between populations within con-
tinents (Deka et al. 1995b; Barbujani et al. 1997). The
fact that there is little differentiation between popula-
tions within continents has important implications in
the forensic setting, in that it supports the current prac-
tice of grouping reference populations into broad ethnic
categories when autosomal STRP data are used (Na-
tional Research Council 1996).

In general, the results obtained here are encouraging
in the broad congruency seen among different types of
genetic systems. These systems portray similar accounts
of the evolution of our species, and they support the
general conclusions that humans show relatively little
between-population diversity and that Africans have
greater genetic diversity than do other populations.
They thus provide further support for a relatively recent
African origin of modern humans. The differences that
are seen, for example, in Y-chromosome and mtDNA
variation suggest intriguing phenomena in our history
that need further testing with additional data from ad-
ditional populations sampled throughout the world.
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Kaessmann H, Wiebe V, Pääbo S (1999b) Extensive nuclear
DNA sequence diversity among chimpanzees. Science 286:
1159–1162

Kayser M, Caglia A, Corach D, Fretwell N, Gehrig C, Graziosi
G, Heidorn F, et al (1997) Evaluation of Y-chromosomal
STRs: a multicenter study. Int J Legal Med 110:125–133,
141–149

Kimmel M, Chakraborty R, King JP, Bamshad M, Watkins
WS, Jorde LB (1998) Signatures of population expansion in
microsatellite repeat data. Genetics 148:1921–1930

Kittles RA, Bergen AW, Urbanek M, Virkkunen M, Linnoila
M, Goldman D, Long JC (1999) Autosomal, mitochondrial,
and Y chromosome DNA variation in Finland: evidence for
a male-specific bottleneck. Am J Phys Anthropol 108:
381–399



Jorde et al.: Distribution of Human Genetic Diversity 987

Lewontin RC (1972) The apportionment of human diversity.
Evol Biol 6:381–398

Li W-H, Sadler LA (1991) Low nucleotide diversity in man.
Genetics 129:513–523

Lum JK, Cann RL, Martinson JJ, Jorde LB (1998) Mitochon-
drial and nuclear genetic relationships among Pacific Island
and Asian populations. Am J Hum Genet 63: 613–624

Merriwether DA, Clark AG, Ballinger SW, Schurr TG, Sood-
yall H, Jenkins T, Sherry ST, et al (1991) The structure of
human mitochondrial DNA variation. J Mol Evol 33:
543–555

Merriwether DA, Huston S, Iyengar S, Hamman R, Norris
JM, Shetterly SM, Kamboh MI, et al (1997) Mitochondrial
versus nuclear admixture estimates demonstrate a past
history of directional mating. Am J Phys Anthropol 102:
153–159

Meyer S, Weiss G, von Haeseler A (1999) Pattern of nucleo-
tide substitution and rate heterogeneity in the hypervari-
able regions I and II of human mtDNA. Genetics 152:1103–
1110

Milewicz DM, Byers PH, Reveille J, Hughes AL, Duvic M
(1996) A dimorphic Alu Sb-like insertion in COL3A1 is
ethnic-specific. J Mol Evol 42:117–123

Mountain JL, Cavalli-Sforza LL (1994) Inference of human
evolution through cladistic analysis of nuclear DNA re-
striction polymorphisms. Proc Natl Acad Sci USA 91:6515–
6519

National Research Council (1996) The evaluation of forensic
DNA evidence. National Academy Press, Washington, DC

Nei M, Livshits G (1990) Evolutionary relationships of Eur-
opeans, Asians, and Africans at the molecular level. In: Tak-
ahata N, Crow JF (eds) Population biology of genes and
molecules. Baifukan, Tokyo, pp 251–265

Nei M, Livshits G, Ota T (1993) Genetic variation and evo-
lution of human populations. In: Sing CF, Hanis CL (eds)
Genetics of cellular, individual, family, and population var-
iability. Oxford University Press, New York, pp 239–252

Nickerson DA, Taylor SL, Weiss KM, Clark AG, Hutchinson
RG, Stengard J, Salomaa V, et al (1998) DNA sequence
diversity in a 9.7-kb region of the human lipoprotein lipase
gene. Nat Genet 19:233–240

Passarino G, Semino O, Quintana-Murci L, Excoffier L, Ham-
mer M, Santachiara-Benerecetti AS (1998) Different genetic
components in the Ethiopian population, identified by
mtDNA and Y-chromosome polymorphisms. Am J Hum Ge-
net 62:420–434

Perez-Lezaun A, Calafell F, Comas D, Mateu E, Bosch E, Mar-
tinez-Arias R, Clarimon J, et al (1999) Sex-specific migration
patterns in Central Asian populations, revealed by analysis
of Y-chromosome short tandem repeats and mtDNA. Am J
Hum Genet 65:208–219

Poloni ES, Semino O, Passarino G, Santachiara-Beneceretti AS,
Dupanloup I, Langaney A, Excoffier L (1997) Human ge-
netic affinities for Y-chromosome P49a,f/TaqI haplotypes
show strong correspondence with linguistics. Am J Hum
Genet 61:1015–1035

Quintana-Murci L, Semino O, Poloni ES, Liu A, Van Gijn
M, Passarino G, Brega A, et al (1999) Y-chromosome spe-
cific YCAII, DYS19 and YAP polymorphisms in human

populations: a comparative study. Ann Hum Genet 63:
153–166

Reich DE, Goldstein DB (1998) Genetic evidence for a Pale-
olithic human population expansion in Africa. Proc Natl
Acad Sci USA 95:8119–8123

Relethford JH (1995) Genetics and modern human origins.
Evol Anthropol 4:53–63

Relethford JH, Harpending HC (1994) Craniometric varia-
tion, genetic theory, and modern human origins. Am J Phys
Anthropol 95:249–270

Relethford JH, Jorde LB (1999) Genetic evidence for larger
African population size during recent human evolution. Am
J Phys Anthropol 108:251–260

Rieder MJ, Taylor SL, Clark AG, Nickerson DA (1999) Se-
quence variation in the human angiotensin converting en-
zyme. Nat Genet 22:59–62

Rogers AR (1995) Genetic evidence for a Pleistocene popu-
lation explosion. Evolution 49:608–615

Rogers AR, Jorde LB (1995) Genetic evidence on the origin
of modern humans. Hum Biol 67:1–36

——— (1996) Ascertainment bias in estimates of average het-
erozygosity. Am J Hum Genet 58:1033–1041

Sajantila A, Salem A, Savolainen P, Bauer K, Gierig C, Pääbo
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